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SUMMARY

Following the introduction of the linearized partial differ-
tial equation for nonsteady thre~nsional compressible flow,
general methods of solution sre given for the two- and tbree-
&Mensional steady-state and two+iimensionalunstea~-state equations.
It is also pointed out that, in the absence of thickness effects,
lima theory yields solutions consistent with the assumptions made
when applied to lift~ace probla for swep+back plan forms
at sonic speeds. The solutions of the particular equations are
determined in all cases by means of Green?s theorem and thus depend
on the use of (%een~s equivalent layer of sources, sinks, and
doublets. i%proper integrals ti the supersonic theory are treated “
by meaus of Hadamsrdgs ‘finite parttttechnique.

Four applications of the general solutions me given: First,
the angl=f-attack load distribution for a supersonic, yawed,
triangular plate with subsonic leading edges is deterndned. Second,
dowowash is calculated along the center line h the plane of the
unyawed triangular ~, Third, the growth of load distribution is
presented for subsonic and supersonic ~ensional flat plates
either starting from rest at a uniform velocity or experiencing an
abrupt angl=f+ttack chsmge. The transient effects on lift+mwe
slope are then calculated. JHnally, the load distribution and lif+
curve slope of a specific swept+back lifting surface are determined
at a free-streem Mach number of one.

lTresented by Dr. Heaslet at the VII International Congress of
Applied Mechanics, September 1948, London.

. ...== .: ---- .----— —. —.- -., .. —______ ___ —-— —.. ----- ____.. . ..
,.



2 NAC!A‘II?~0. 1767 .

13VTRODUCTION

If the effects of viscosity are assumed small and shock-fkee
compressible flow is considered, the velocity field about a WC- or
thre~ensional body placed in a uniform free stream is irrota-
tional and thus possesses a velocity potential. In the determinatiau
of the pressures exerted on such a body or in the calculation of the
induced velocity components, the theoretical aerodynamicist is
concerned essentially with finding the velocity potential of the flow
field and, thus, must determine the solution of a second+rder nom
linear partial differential equation subject to certain boundary
conilltions. The known mathematical difficulties that arise in the
treatment of such a problem make it expedient to resort to shplify-
ing assumptions. In applied aerodynamics,however, efficiency of
flight at high speeds has focused attention on boties inducing
relatively small velocities throughout the field of flow and, as a
consequence,the demands of engineering furnish a guide for the
mathematical simplificationof the theory. The so-called linearized
theory of compressible flow was developed to solve such problems and,
although considerablework of a more precise nature has been present&1
in two dimensions, a large smount of investigation inunsteadyflight
and in three-Mmensional wing theory remains to be completed within
the framework of the simplifying conditions.

The present paper is restricted to a discussion of wing theory
subject to the assumptions of linearized compressible flow. It
therefore employs solutions of Iaplace~s equation and the wave
equation for cases where the boundary conditions are specified in
the plane of the wing. Attention will be directed prharily to the
analysis of steady-state conditions although an equivalence will.be
established between the two-dimensional differential.equation cd~
taining the time variable and the equation applying to three
Mmsnsional supersonic wing theory. Solutions in aXl cases wild.be
obtained through the use of Green~s theorem snd the resultant concept
of Greents equivalent layer of sources, sinks, and doublets. The
correspondencebetween the theoretical development for subsonic and
supersonic speeds is particularly useful since experience related to
analysis in either flight regime is more readily transferred.

-,,.

,,

In tiew of the widespread use of sources, simks, and doublets
in lo~eed studies and the fact that the earlierapplications to
supersonic wing theory by Prandtl (reference 1) and Schlichting
(reference 2) corresponded to the use of Green’s equivalent layer,
it is notable that later emphasis has shifted to other methods of
solution. Sources alone were usedby Puckett (reference 3) to create
symmetrical nonlifting wings and were also applied to the study of
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lifting triangular wings with supersonic leading edges, but the use
of source, sink, and doublet sheets has not been as extensive as
might have been expected. This anomaly is even more apparent in view
of the vast mathematical and physical literature centering around
the use of Greents theorem. One possible explmation may stem from
the fact that the interest of the mathematician and physicist in the
wave equation has arisen in connection with problems in acoustics,
optics, and vibrating menibranes. Such problems introduce boundary
conditions of the Cauchy type, that is, initial conditions need to
be known both for the unlmown function and its rate of change. The
supporting surface for such’boundary conditions cuts the characte~
istic cone of an arbitrary point in a closed curve and has been
called by Hadamsrd (reference 4) a duly inclined surface. In aerc-
-Cs the suppotiti S~face is nonduly inclined and cuts the
characteristic surface or Mach cone along the arc of a hyperbola and,
as a result, the problem is no longer of the Cauchy type and the
analysis beccmes similar to that used in subsonic theory in the SOIW
tion of Laplacets equation. Prior to the interest of the theoretical
aerod.ynamicistin supersonic whg theory, it appeers that little
attention in application was Qaid to this type of solution.

The material presented here is divided into two main divisions:
Analysis and Applications. In the first part of the Analysis
division, the linearized differential equation for nonsteady com-
pressible flow is given together with the underlying assumptions made.
Specific forms of this equation for two- andthre~ ional steady
states and ~ensional unsteady states are then considered. It
is pointed out in particular that for swept-back lifting surfaces
linewized theory yields consistent solutions at a fre&stresn Mach
number of one although the analysis of arbitrary thiclmess distribw
tions is not possible. Followingthe various equations, Greents
theorem is-applied to find, in terms of the known boundary conditions,
the desired solution by means of source and doublet distributions.

Applications of the general.methodsare confined to four problems.
As an example of the manner h which .angle+f-attack load distributicms
are determined for a lifting flat plate, the case of a yawed triangular
wing with subsonic leading edges is solved. Doublet distributions are
then applied in tie second problem to the calculation of downwash
behind the same wing in an unyawed position. Third, the growth of
load distribution with time is derived for a supersonic tw~ensional
flat plate either experiencing a sudden shkingmotion or starting
from rest at a uniform velocity. Such distributions are of value ti
the calculation of indicial lift functions ad canbe used, together
with Duhsmel~s lnte~al, in the study of certati dynamic maneuvers.
The fhal application considers at a Mach number equal to one the case
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of a sweptiack lifthg surface with tips normal to the free-stream
direction.

All @ortant Jsy’ribolsare defined in the appendix.
-.

AIwm%rs

The PartialDifferential. Equations

Basic differentialequation.- Consider u aerodynamic body

= at ~ ~bit~ Wch m.miber I& ‘h air initially at rest.
If a Cartesian coordinate system x, y, z is fixed relative to the
body, the body may then be assumed stationary and situated in a free
stresm with the same Mach nuniber. If the fre=tream velocity vectdr
is parallel to and ti the Mrectlon of the position x axis and if Q
denotes the perturbation velocity potential for isentropic flow, the
linearized partial differential equation for q may be written in
the form

(%*–l)%–%+z+j&-tt+y q&-=o (1)

where a. is the v610city of sound in the free stream and t denotes
time.

The assumptions underlying the derivation of equation (1) have
been stated in numero~ places but are not always obviously compatilil_e.

It is assumed here that the ratios ~, ~, ~ are small compared to
VC) Vo Vo

one, where u, v, w are tiduced velocity components and V. is the
mlocit y of the free stream; moreover,

and, finally, the velocity gradients at a given point of the flow
field are all of similar magaitude.

Special cas&.- The particula forms of equation (1) to be
considered are given in table 1. Ih the steady+tate equations the
original.~pendent variables are retained; the tw~ensional
unsteady+tate equation has, however, new variables defined by the
relations

_.—
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X9 =x– *t, 21 = z,

b

and consequently the boundary conMtions for
will be subject to the ssme tr~formation.
the constrtits imposed by the linearization

tt = aot (2)

ql?tiic- example
b all the equations
permtt, for problems in

whg theory, the boundary conditions to be specifie~titheplam.e of
the wing. This plsne shall arbitrsrilybe takento be z=O.

.

TABLE I.- LR?EARIZEDPARTIALD~ EQUATIONSOF
COMI?RESSIELEFLow

Steady State

{

(I*’=’) ~ + 9ZZ = o, MO<l, (A)

Dimensims (M02-1)%x - %2 = 0, MO> 1, (B)

[

(1*2) ~ + ~ + ‘?Zz= 0, ~<1, (c)
Three (~2-1) ~ - ~ - ~zz = O, ~>L\ (D)

Dimensions Tm+Tzz=o ~ = 1, (E)

Unsteady State

Two
Dimensions

qt?tt - ~T# -q~tzt = o (F)

The Mach number range for which the equations are valid cannot
be prescribed a priori since induced velocities are functions of wing
geometry and angle of attack. We can say, however, that for certain
configurations at small angles of attack the equations and their
solutions are consistent with the assumptions. In particular, three-
dimensional lifting swfaces with sufficient sweepback yield solutims
of this class at %=1. The d.ifferentiallequation shows that b this
case the boundary conditions need only be specified along strips in
the transverse direction. The surfaces of the Mach cones also are
normal to the freestream direction so that any disturbancepoint
makes itself felt at all points not upstream of it. Stice for these

-.-—. — —--—-.– -.--————— --—--.---—--—— -- —— -- -—-—- ---—- -— --—--—— --
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lifting surfaces the disturbances do not become excessive at ~=1,
we have a specific kind of lateral strip theory that yields formal
solutions compatible with the assumptions made.

BoundaryConditiom

Steady state.– The Mmndary conditions axe given in the z=O.
plane and in the case of ~ensional theory the whg is assumed
to extend hfinitely, parallel to the y axis. As a convenience in
notation, two subscripts will be introduced: the first, u, denotes
conditions on the upper surface of the w5ng, that is, the limit of
the function as z approaches zero through positin values; the
second, Z, denotes conditions on the lower surface of the wing, that
is, the limit of the function as z approaches zero through nega-
tive values.

Four typesof boundary conditions arise in practice:

1. Symmetrical nonlifting wing (boundary-valueproblem of the
first kind).– me conditions Wu = ~ = O hold over all
of the xyplane except for the region occupied by the wing.
On the w3ng, the relations Z%u = – ~ = Awo = f(x,Y)
-e given, the function f(x,y) be= determinedly the
geometry of the configuration. Over all of the xypl-ane,
A% =Uu–uz =0 applies.

2. Liftingsurface with specified loa&img (boundary value
problem of the first kind).– The condition
A~=uu–uz=O holds over the ~ plane
region 06cupiedby the wing. On the wing,
2%=-2uz =AUO = f(x,y) are given, the
being determinedly the specified loading.
the xy plane, Awo = O applies.

except for the
the relations
function f(x,y)

Over all of

3. Lifting surface with specified cmikr andamgle of attack
(boundary-valueproblem of the second kind).– The
condition A% = O holds over the xy plane except for
the region occupied by the wing. On the ~ the
relation w = f(x,y) is given, the function f(x~y)
beimg determined by the given camber, twist, and angle
of incidence. Over all of the XY p~e, Awo = O applies.

4. Symmetrical wing with specified pressure distribution
(boundary-valueproblem of the second kind).– The

,,

.,

— —. .. ———.--.. ——-— ——.— -.—
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condition Awo = O holds over all of the xy plane except
for the region occupied by the wing. On the wing the
relation u = f(x,y) is given, the function f(x,y) being
determinedly the specified pressure distribution. Over
all.of the xy plane, A% = O ap@ies.

In all cases, induced velocity u is related to pressure coef–
ficient Cp hy the relation

CP=.*. 0

Unsteady state.- The steady-stateboundsry conditions have been

given tithe most general terms possible. The unsteady-state confi–
tions till be limited to a,more restricted type of probla, namely,
cases wherein the airfoil is assumed to experience at t=o either an
abrupt change in angle of attack without pitching or starts to travel
at the instantaneous velocity V. and angle of attack a. In this
way the transient variation of load distribution and atifoil charac-
teristics canbe calculated for unit angl~f-attack change. Wmilsr
methods can treat unit rate of pitching, or deflection of aileron, as
well as the effects produced
when the airfoil enters a gust
of given structure. The use
of solutions of such problems
in connection with operational
methods is well known in applied
mathematics. Applications of
these operational methods to
aerodynamics have been given by
R. T. Jones (references~ and6)
for incompressiblefluid theory
and by Heaslet and Lomax (refeh
ence 7) for supersonic flow.

If the rec~ coo~
dinate system xt,zt,t? assoc-
iatedtith equation (2) is co~
sidered to be fixed, the airfoil
moves in the negative x~ direc-
tion and the freestresm velocity
is zero. A stmple distortion of
the the axis is also introduced

(a) Supersonic wing. “

LEAOING

E
//

(b) sUbSOIliCWiIlg.

to simpLlfy the differential R@ure l.– Diwam for use in d.eter-
equation. figures l(a) and l(b) -mining boun~ conditions in
aid in the visualization of the dimensional un.steadymotion.

.-..— ---
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problems involved.
on the XT sxis with
the point XT = co.

The airfoil section is assumed to lie initially
leading edge at the origin and trailing edge at
As time prowesses the airfoil sweeps across a

portion of the xttt plane, the leading edge traversing the line
xl ._~t7 tie the tr~~e of the trai~ e~e is the l~e
Xt =co_~tto The regionboundedby these lines and the line
tt = O is that swept by the airfoil. The characteristic cones of
the differential equation cti the xtt$ plsne along lines incltied
atths” to either axis. If the airfoil experiences an angle-of-
attack change a without pitching, the l’qrea**swept over by the wing
must @eld w = – Voa. On the other hand, if the airfoil enters a
gust of constant vertical velocity Wo, the region over which the
modification of w is effecti= is restricted to the region occupied
simultaneouslyby the a5rfoil and the gust. If, for example, the
edge of the gust is fixed along the tt axis, this -s will.form the
right-hand boundary of the region over which the change in boumkry
conditions OCCWS. A statement of these boundary conditionsmaybe
put h the foll&dng form:

1. LifWng surface undergoing abrupt change or starting from
rest with given velocity.– The condition A% = O holds
over all of the x~tx plane except for the region swept
across by the a~oil. In this latter region, the rela-
tion w= f(xr,tt) is given, the function f(xt,tt) being
detemdnedby the modification in airfoil amgle of attack,
pitcldng velocity, aileron deflection, or by the gust
structure. Over all.of the xtt~ plane, Awo = O applies.

The expression for pressme coefficient is

(%=+21+VMVo at ‘x )
-–2*
v& at?

Solution of Boundary-ValueProblems

Genersl treatment.– The use of &eents theorem in the solution
of secontirder partial differential equations leads one to the con-
sideration of certain particular solutions of the given equations. .
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Because of the physical
cability, attention has
fundamental solution or

9

importance as well as the mathematical appli-
been centered on the use of a so-called
source potential. Thus, in the mibsonic

case, the potential at the point x,z of a unit somce located at
the point ~, ~ and applicable to equation (A), table 1, is the
logarithmic fmcti.on

Q(x,z) =*Znr ~ in
A=2fi %& )2+P2(H )2 (3)

while for equation (C) the potential at x,y,z of the unit source
at ~,qj~ is

Q(x,y,z)
_-1_ -1

km-c hi-rJ(x+)z+p’[(y-q) +(~)’]
(k)

Here and elsewhere we have f32= 11-11o’I where the bars indicate
that absolute values are to be taken.

The application of these potential functions to the solution of
boundsry-value problems in mibsonic linearized flow is well lmown.
Supersonic theory, however, introduces added complicationswhen
the fundamental solutions are considered and, although methods hav’e
been established, the mathematical techniques are of comparatively
recent ori@. The principal difficulty lies in the integration of
highe~rdered singularitiesthat appear in the three-dimensional
analysis. Hadamard (reference k) resolved these difficulties and
thus avoided the more specialized approach of Volterra (reference 8).
It would appear, however; that a more direct method of derivation
stems from Marcel Rieszts use of fractional integration. (See, in
this connection, references 9 and 10.) The oddness or evenness of
the nmiber of dimensions still involves considerable differences
but the ftial solutions are easily applied.

In two43mensional supersonic flow, the potential at the point
x,z of a unit source located at the point ~, ~ is defined as
follows:

q(x~z) = O for (x–~)2< ~’(z-~)’

q(x,z) = -* for (x-~)2> p’(z-~)’ (5)

,—. —. ..— ——-.. _ -— .__. ___ .. ... . _- _.. _
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In three dimensions,the source potential is

NACA TN HO. 1767

.
q(x,y,z) =—=G

at all points for which the

–1

21r/(x-&&[(Y-q)2+(z4=l
(6)

/

radical is real and is zero elsewhere.

These functions are Mrectly applicable to equations (B) and (D)
of table I. Equations (E) and (F) are, of ccnrrse,special mathe-
matical cases of equations (A) and (D) for which ~ is O and@,
respectimly.

By means of the various source potentials, it is now possible
to present solutions of the differential equations in terms of the
prescribed boundsry conditions. These conditions are assumed to be
given in the z=O plane and subscripts u and 2 shall again
denote conditions at z=O+ and z=&, respectively. The general
solutions appear as follows:

Equation (A), ~<1,

co

q(x,z) =~
2* L[

Zn(rA)
c.@-~)- ‘W4Z) (+%),+]”

(7)

Equation (B), ~>1

X+32 ~
q(x,z) =–~ r -&E forz>o

,
-m

(8)

Equation (C), ~<1

.

,,

—.,---- ——— —.–—- ——.
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Equation (D), ~>1

U.

q(x,y,z) =-*

(lo)

In the last equation, the range of integration is confined to that
portion of the z=== plane that lies within the Mach forecone of the
point X,y,z, that is, within the half-portion of the right circular
cone

(x+)2+2 [(y~)2+(5g)2] =0

lying upstream of the point x,y,z. The semivertex
cone is the Mach amgle ad is given by the relation

p=axc

The symbol 1—- i?as

sin~=
%

‘xc cot $

introduced by
“fimi~e part’”of the integral. As m tfi
value, an improper integral is reduced by
a finite snd unique value. By definition

angle p of this

Hadsmsrd and denotes the
case of Cauchy%s principal
a prescribed technique to
(see also reference 11),

If%A(x)dx

f

m A(x)~(@ ~ _ 2A(XJ

(xO–x)“/2= * (%-x)“/’ (X&a)‘/2
(n)

s.

In the ‘two-dhensional supersonic case, the solution for the
velocity potential is expressed as the integral of a distribution of
source potentials. In all other cases, both the source potential
sad its derivative appem in the integrand, this latter expression
behg identified with the doublet potential..

I?onliftingcase (sywetrical wing, boundary-value problem of the

,ftiSt dkin .- Equations (7), (8), (9), ~ (10) are applicable directly
to the calculation of the potential function corresponding to a

.—. ..— —— ——— . .—--. ————.— . . —-—. —
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symmetricalldng. The relation ~ = qz follows from the condition
= u2. Moreover, if @ denotes the local slope of the ~erUu

ax
surface of the wing,

1% lhz~—— =—— —=
V. az V. az () ax

and the solutions of the various equations are expressed in terms of
source distributions alone.

For example, equation (10)

Vo
Cp(x,y,z) =–y JYT

becomes

% d~dq
ax K/(x-~)’-p’[(yfl)’+z’]

(12)

where the finite part sign is dropped since the integral is proper.
This equation was given by Puckett in reference 3.

The pressure coefficient on the surface of the wing is

Lifting,case (boundsry-tiue problem of the first kind).- Rrom
the condition wu = WT. we have AWO = O and the intewands in
equations (7), (9), aid (10)
doublet distributions,while
conditions on either side of
side.

- equation (10) as
scribed conditions is

r

are ~ressed solely in terms of
equation (8) yields the result that
the wing have no effect on the other

an exsmple, the solution under the pre

~x,y, z) = – & lJf“U+Z){(.-,,’::;:,’+2’1}./2“3)

I

,--,,-----
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where

A more direct evaluation of perturbation velocity u can be obtained
from the alternate expression

(14)

Similar expressions exist for equations (7) and (9) .

Lifting case (boundary-valueproblem of the second kind).- This

type of boundary condition cannot be solved directly by means of the
formulas wlrlchba.vebeen presented but resolves always into the
required solution of an integral equation. In thre*ensional su&
sonic wing theory, the method of solution depends usually Onmme
modification of Prandtlts lifting-line theory although, more recently,
liftiq-surface theories by Falkner (reference 12) snd Cohen (refe~
ence 13) have been applied successfully.

In the case of thre~ensional supersonic theory, sources,
sinks, and doullets have been utilized in two ways h the solution
of lift-surface problems. The first of these methods was givenby
Evvard (references 14 and 17) and is prticularlypowerful when one of
the leading edges of the wing is of the supersonic type, that is,
when the velocity component of the free stream normal to the edge is
greater than the speed of sound. A second method of solution was
presented in reference 16 for the hportant case of wings with S*
sonic leading edges, provided the flow field about the wing is of the
conical type introduced by Busemann (reference 17) . The essential
feature of this method is the use of differential.lifting elements
carrying a constant load and designed for use in conical flow fields.
The solution consists of determining the distribution of loading
over these elements so that the resultant induced vertical velocity
at any point on the lift~ surface satisfies the local boundary
condition. When approached from this standpoint,the problem again
requires the solution of an integral equation
the form

J
b-w(x) = xl—x

a

but the equation is of

(15)

— .. . __ ____ <.- —-.—. _ ..__- .—
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and is thus well known from lo%%rpeed airfoil-sectiontheory.
Inversions of this euuation have been provided by Allen (refe~

l%hgure2.– Lifting swface elment
carrying constant load.

and m where

e=

WAe =

(JJ.

Denotingthe gradient of this.

en;e 18) md- von llisesand
lhiedrichs (reference 19).

Figure 2 shows the
elemental lifting surface to be
used. The sides of the element
extend back f!romthe tip of the
Mach cone, making angles ~ ~d
W-Ah with the positive x axis
or free-stream direction. The
vertical velocity induced at the
point x,y,o by the element

Pbe a function of b, Ab, and ~

or, chaz@ng the notation, 13,AEl,

vertical velocity with respect to 19

*Z=O
by -, it follows that

ae

ae Afp () Ae

where W(e,o) and W(@AO,m) are the velocities induced by right-
triangular lifting surfaces with constaut loading and with vertex
angles equal to b and 6+A8, respectively. The velocities
induced by the constantly loaded surface are determined directly
from equation (13). The results of these calculations yield the
following expressions:

For m<e

.’
——. _____
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.

and for m>e

where

(16a)

(1611)

V02 AT
c =——

2q

‘p is the load coefficient and is equal to the difference!l!heterm ~

between pressure coefficients on the lower and upper smface of the
m)

Ap PZ-PU
–’—”c%-%q q

Non3Mting case (%oundary+mlue problem of the second I&@ *— In

the previously discussed lifting case, the induced vertical-velocity
field of a constantly loaded element was calculated. An analogous
type of element csm also be developed for use in the determination of
nonlifting wings with prescribed pressme distributions. It iS
apparent that ~erenti~ expressions s~ to equations (16a) and
(16b) must be derived which
x component of prturbatim
constant vertical velocity.
expressions result:

For ~<e

establish the induced field of the
velocity for a conical-flow el~t with
ltromequation (12), the fol.lowing

(lya)

.—— —,>. .— .- A_._.. . . . . . . . . . . . . . . . ________ ________ ..~_.__

. . .
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and for 0>0

W ‘IT NO. 1767

where pressure coefficient ~ and surface slope k are

. 2UCp=– —, x.=?
V()

The application of equaticms (17a) and (17’b)to the determination
of a thickness distribution supporting a given pressure distribution
consists of determining 1. as a function of O such that the desired
pressme results. The essential simplificationof the method is brought
about by the use of elements which lead to single integrsl equations of
standard form.

APPLICATIONS

Yawed Triangular Lifting Surface

Consider ayawedj triangular flat plate with subsonic leading
edges such as is in~cated in figure 3. Relative to the x axis or
free-stream direction, the sides of the trisngle make the angles

50 snd- b= so that the total
vertex angle is bo+%l=2A.
The quantities 190,61, andu
are also introduced where

eo=ptabo

el=ptanbl

CD= P:
Figure 3.- Yawed triangular flat-

plate lifting &rface with su&
sonic leadimg edges.

— ——z -—

-,,-,’-
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The vertical induced velocity at any poi@ on the wing can be
found from equations (16a) and (16b), provided the distributim of
the loading factor C is known. Setting C=C(e), the doq~ is
given by the expression:

J
el

+ c(e)aer &z= ~=
1

(18)
a -1 %(%-0)2

Since the lifting surface is flat, the function C(e) must be found
such that ~z=o is independent of 0 for +1<0< 6.. The integral
equation can be greatly simplified by integrating the O1 variation
by parts and then tsMng the partial derivative of both sides of the
equation wtth respect to u. ti this manner, equation (18) reduces
to

which becomes

a
o=—

f
‘“w.

b
+

The solution of equation (20) canbe titten “

and, if the integrated loading of the wing is

c(e) = A9+B

J(e+eJ (Ho)

Al < e.

finite

(20)

(21)

(22)

. .-. —- .- ——-— -..-.-—. -=. ——— —— .-. —- ---- -— —-. — —. —-. .-—-—...-- —.- ---
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Sdmtitwbion of equation (22) into equation (18) yields the two
relatiom

p [~l(eoY 1WZ* = —
2V0

e ) +BH’(e~, e=)] (23)

and

where

and -

81

I @l
H.2(e~,(30)=

q’ A/(l*’) (q+,) (LDJ-+ec))
1

(24)

(25)

(26)

Equations (~) and (26) may be integrated by the standard methods
for elliytic integ’als and, after substituting into equations (23)
and (24) smd solving for A and B, we have

and

(27)

(28)

where

~ = l+eoel – /(1--+3.2)(1-(91’) (29)
eo+el

and E! is the complete elliptic integal of the second kind with

modulus &@.

The load distribution over the wing can nowbe calculated from
equations (22), (27), and (28).. It fo~ows that

———._. ..-— —— ~— —------- — —. .
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Q _ 2c(e)
q V02

19

(30)

Typical load distributions
p tan 5= = 0.6 and for p

over a yawed wing are shown in figure 4 for
tan~o em to O, 0.3, 0.6, ando.9.

r’‘o

.

-1.0 -.8 -.6 -.4 -.2 0 .2 .4 .6

I
I
I
I
I
I

Figure 4.- An.gle-of+ttack load distribution over yawed triangular
pIan form, P tanb= =0.6.

)

—...—. .. ..— —.. - __ . -. -.-— ——— ———. -.—.
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Integration of equation (30) over the surface of
determines for lift coefficient the expression

HACA ‘INNO, 1767 ‘

the triangular

( 31)

where A is sidesl.ipangle and 2A is the angle between the leading
edges. Equation (31) was derived for wings with subsonic leading

. edges and supersonic trailing edge and consequently is valid only for
cases for tich

p + A< 90°
t

A+L<p

A- A>o (32)

Downwash Behind Triangular Wing in Supersonic Flow

The second application will show how doublet distributionsmay
be employed in the calculation of downwash in the wake of an unyawed
triangular wing with subsonic leading edges. The expression for the— —

‘velocitypotential will be
given in general form, but
in order to avoid detailed
analysis the value of _
wash is deterndned only
along the center line in
the plane of the wing.

A phl view of the
wing and wake is shown in
figure 5. The load distri-
bution over the wing is
found from equation (30),
after setthg 00=01, to
be

(33)

Figure 5 .– Triangular wing and wake
together with regions used in cal–
culating downwash.

.— . ..- . —— ——
,.
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where E~o has the

so that the jump h

21

modulus @+02. Moreover

potential ~~ on the surface of the ~ is

(34)

and for points in the wake is

2aVo
PrPl = — $E~op eozcoz+y

where co is the root chord of the wing. Since the wing and its
wake form a discontinuity surface for the perturbation velocity
potential and since for &U. po~s on this surface

(35)

●

it f Ollows from
arbitrary point

equation (10) that the velocity potential at an
x,y,z is given by the relation

q(x,y,z) = & JTW2)(%L0‘E’” (36)

where -r is that portion of the wing and wake forward of the Mach
forecone from the point x,y,z ~ (wz) iS @veIL by ev- “
tiom (34) and.(35)●

The value of the dowuwash aft of the wing and along the x axis
will be calculated from equation (36), thus

.- .— .—. .— — ——-..—. ,—. . —.—— . . . .
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is to be determined.
necessary to consider

RegionA extends

In csrrying out these
two segments of the x

calculations, it is
-S behind the wdng:

from the trailinn edge to the point where the
trailing l&ch cones from the tips of the @ inters~ct the x axis”
aud thus includes values of x satisfying the inequality

co~x~co(l+eo)

Region B ficludes values of x for which

Co(l+eo) =X

The finalexpressions for dowrfwash
found, after some manipulation, to be

h the two regions are

wRegion A: — = 2
&-(l&2)& E!o-o

+
Ho llZl& Et.

w 2E= 2

r

lK~&RegionB: — =— —Ho lmo + ldl~oo ~

where

(37)

(38)

Wo induced vertical velocity on the wing

K complete elliptic integrsl of the first kind

Kl, K2 complete elliptic titegral of the first kind with
moduli kl, k, respectiwly

E complete elliptic integrsl of the second ldnd

—— . ---
,,’

.

...— — —



I

I

I

NACA TN NO. 1767

El, & coqpleteelliptic integral
kl, k2, respectimly

kl
Coeo
x-co

x-cok2 —
coeo

Figure 6 shows the variation of ~

23

of the second kind with moduli

.

along the x axis for various

values of the parameter oo=~ t~ so. The asymptotic values at ~cn
are also indicated and can be shown to wee with the values of
downwash at hfinity for a wing with the same span load distribution
in incompressible flow. The discontinuity in downwash at the tram .
edge is a characteristicproperty of supe&onic-type trailing edges. ‘

Lo
8.=.2 I w --

---

.8 .4
-,--

---
*

6
.6

w“
75

.8
To FOR WING SWEPT 45e

.4 95 $ pz

.4 “.4 1:08.

.6 .6 1.16

.2 - .8 .8 1.28

---ASYMPTOTIC VALUES

o
Lo 1.2 14 L6 1.8 2.0 2.2 2.4

&ixsTANcE IN cHoRDs

Figure 6.- Variation of downwash on x axis behind
~ Plottedas a tiction of difiace h chord

-.

a triangular
lengths.

..—.- .. ___ ——-—. . .. .- —.— .– -_.. _+ . ...__ ....>.____ .-
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Denoting downwash at this petit by wt, Lagerstrom and Graham
(reference 20)0have shown that

Wt Et@.—=—
T?o Eto

A more detailed development of the results shown”in figure 6 has
been given in reference 21.

Two+Mmensiond Unsteady Lift Problems

It has alreadybeen yotited out that, in the case of unsteady
motion in a two—dimensional compressible-flowfield, the linearized “
partial-fferential equation for the perturbation velocity potential
can be transformed tito the ssme form that has been considered h
solving steady-stateproblems in supersonicwing theory. This
tiediately indicates the possibility that for certain types of
boundary-valueproblems in the unsteady case an analogy can be estab-
lished with thre~mional lift-surface problems.

As m example, let us consider an airfoil that has been fly3ng
at supersonic speed and then experiencesat tr=0 u abrupt angle-
of-attack change without pitching. Since the angl~f-attack change
is assumed to take place at tt=o, it C= be assumed that pretious
to this time the induced velocities of the wing are zero smd only
subsequentperturbations sre to be calculated. Throughout the swept
sxea h the xtt! plane (fig. 1) the vertical induced velocity w is
constant and equal to —Voa. Elsewhere in the zr=O

3
lane there is

no discontinuityin the value of pressure, that is, Q is Contw
uous at z~=o. att

.

Suppose now that the area is a wing plan form smd that the-
free stresm is directed along the tr axis. The characteristic
cones of the unsteady problem become the Mach cones of the steady-
state problem, and the Mach number of the free stream is &! since
the characteristiclines in the figure sre inclined 47° to the axes.

&Moreover, the Induced vertical velocity is — and the perturba-
azr aq

tion velocity in the fieestream direction is ~. A correspond-

ence can thus be establishedbetween the unsteady problem and a
thre~mional lift~urface problem.

.

—.—— —---- ——— .—. —.—----



As outlined, the bound.ary-mlue problm is one of the second
kind, that iS, w is specified on the wing and Au=Aw=O. off the
wing. In ow particular example, however, the edges of the wing are
of the supersonic type and no interaction exists between the two
surfaces of the lifting @ate so that pressures on either side csm be
calculated by the methods used for symmetrical nonlift@ wings.
Thus, from equation (12), for z~>0

Voa
v(t~,xf, zt) = ~ 1!! J

dttlaxtl
(40)

(tt-tf=)z–(x~-xtl)z+’zT

and for all z?

q(t~,x$,zl) = -Q(t~,x*,-z*)

The expre~sions for the

fOllows:

Region A (between lines

Region B (between lines

indicial load

Xl=tt, tg=(),

Ap h
—= —
q Mo

AP
coefficient

T
are as

and x~=co+tj)

(41a)

xr=_ t?, x~=t, and xy=co*tt)

Region C (between lines x~=-~t? and xi=–t?)

(41C)

.——...-—. —. ...— — — ——
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‘p with time, as obtained from equations (hla),The growth of ~

(hlb), and (41c), is shown in the portion of figure 7 des&ed
“supersonic.“ At tt=o the loading jumps to the value and is

constant along the entire chord. %This value persists thro out the
previously denoted Region A and thus, with advancing time, moves
rearward along the chord, lea- the trailing edge at “ ‘*”
Over the forward portion of the chord the familiar Ackeret type of
stea~–state loadhg becomes effective, spreadhg back from the
leading edge and occupying the entire chord length after t’ = &.

co
Previous to t~ = —

1~+1
a transition region between the two types of

constant load3ng exists, and absequent to this time this transition

region moves aft and leaves the trailing edge at tt = —.$1

Figure 7.– Pressure
attack change at

-For purposes of
attack indicial load
the part of figure 7

distributions on wing undergoing sudden angl=f-
tt+.

comparison, the growth with time of the angl=f-
coefficiat for subsonic flight is also shown in
entitled “subsonic.” Since in this case the

r,

,_ ___
----



lifting-surfacdanalogue involves subsonic leading and trailing
edges, the malysis requires the solution of a boundary-valueproblm
of the second kind. The method of Evvard (reference 1s) was usedto
obtain the results shown. It is to be noted that the expression

Ap _ &

q %

holds at t~=o for all values of Mach numb&.

2 Mot’
co

q“)
8=”

4“

o

Figure 8.– Indicial lift-mrve slope for Mach nuuibersbetween
O and 1.4 shownto time required to travel 12 half-chord lengths.

Figure 8 shows
~(t’) defined by

the variation of the indicial lift function
the relation

C&(t’) =&a
f

co Ap
~ax

o

(42)

. . —. ..——.. .———.: - -“--~--’”———
—- ,. ----- .. —— ---- ---- .. —--- —— -
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as a function of Mach nmiber
atifoil. The curve at ~=o

and half-chords s
was first studied

HACA ~~0. 1767

traveled by the
by Wagner (refe&

ence 22) snd R. T. Jones (referace 6). Shce the starting value is

&, ~(t’ ) must toitially be infimite. Immediately -e~d,

however, it assumes the value YC and then rises to the asymptotic
value 2Yc. At aMach nunher of O.kthe starting vzil.ueof C&(tY)

is 10 followedby a decrease for the time required to travel approxi-
mately on&balf chord length and finally a steady rise takes place

to the asymptotic value
J%”

At M@.8 the behavior is similsr.

The dashed portions of the cur~es were determined fr,omthe lmown
variations of the functions and were not calculated explicitly. The
asymptotic values of ~ consistent with the Prandtl<lauert correc-

tion become so high, however, with increasing Mach number that the
assumptions of small perturbation theory are undoubtedly invalidated
near ~=1 for sufficiently large values of s. The initial portions
of the s~sonic curves shown in the figure are, however, valid results
of the theory. The nature of the indicial lift function is somewhat
different at supersonic Mach numibersin that the beghming portions of
the curves are flat. The curves rise afterwards, however, in a finite
time to their steady-statevalue. from equations (41a), (41b), and
(41c) the expressions for ~(t’ ) are easily calc~ated for ~b~ 1
and are as follows:

First time interval O< tt < ~l+MO

f&(tt) .-$

.

“

(43a)’

\

co <tl<JQ_Second time interval —
l+MO MO-l

1

+ Moc(j
J+crtq&J2

1
(43b)

—- . —. _—-— -. . —



NACA ~MO. 1767 29

Thirdtime interval & <tt
MO-L

Some of the above
involving the entrance
foil into a gust, have

CL&) = &
\

(43C)

results, along with further developments
at supersonic speed of an unrestrained air-
been given in reference 7.

Swept-BackWings at ~=1

We turn now to the special form of the basic differential.equa-
tion for the case %=1. A& given in table I, equation (E), the
velocity potential satisfiesLaplacets equation

in two dimensions. The boundary conditions need, therefore,“to%e
given along stripsnormal to the free-stream direction. Equation (7)
expresses the solution of the equation in terms of ~ensional
sources, sinks, and doublets where now

2n rA = 2n J(Y-q)2+(=c)2

The proposed problem is the determinationof the angl~f-
attack load distribution over a swept-back lifting plate, the
leading edges till be assumed straight lines while the trailing edge
will, for the time being, be left srbitrary. The nature of the wing

-. . —— — .. .... ——. —..-
.,
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is thus indicated somewhat arbitrarily in figme 9(a).

(a) Plan form with arbitrary
trailing edge.

..

I

k-A———l’- b “ x

(b) Plan form satisf@ng Kutta-Joukowski
condition.

Figure 9.– Swep=ack wings for analysis at Mo=l.

Denoting the semivertex angle by 50 so that the equations of the
leading edges are

it follows from equation (7) that since

.

— ——--—— -.
‘.

.
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the velocity potential is given by the relation

where

(45)

Ii is then possible, after integrating equation (45) by parts and
imposing the condition that A~(x,y) = O at v =* mx, to calck
late the derivative of Q with respect to z and thus obtain for
Wo, induced vertical velocity on the wing, the expression

–1 *AVO(XJTI dv

~

)
wo=—

23( Y-v
(46)

This integral equation is to be solved for Avo, the velocity W.
being assumed constant on the wing and equal to -Voa where a is

angle of attack. The load distribution can thenbe calculated from
this solution bymeas of the relatioa

(47)

The remainder of the analysis can best be divided into two parts:
The first case treating values of x between O and co, the second
dealing with the remaining values of x on the wing.

Case I: o~x~co.- Sincethe leading edges of the wing are
,of subsonic type, sim+yilaritiesin pressure
that the required solution of equation (46)

occur at these edges so
is of the form

(48)

—.—. ——. .. ..—,---- .. —. ——. -— --—- ——. ——.—..— ._._ —.
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Sulmtitution into equation (k6) and use of the fact that A~(x,y) is
an even function of y leads to the result A=O., B=-2w0. Hence

40(%Y) ‘– 2W0 JFL%q (49)

and

Case ~: co ~ x.– Let the equation of the trailing edge be

Y = a(x) or x = a*(y)

Using b equation (46) the fact that

Avo(x,y) = -Avo(x,–y)

the expression for WQ becomes

(5U

(52)

If, on the surface of the wing, Aq)o(x,q) is known, then, in
the wake, the d.iscontinuityinthe velocity potential is l!Wo[a*(~),~)]
since no contributionto the ti in potential is made past the
trailing edge. It follows that if on the ~

Avo(x,q)=f(x,~) (53)

then, in the wake

.—. —— .—.. _. ,-., .;,,’ T
,,
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Avo(x,~) =
[
A_~ +A ~o(x>q)

ax ay av 1 (53)
x=a*(q)

VoAp[a*(q),~] ba*=—
2 q ~

+ f [a*(q),q21 (54)

Substituting equations (53) ‘and (%) tito equation (52) and intro-
ducing the Kutta condition that loaddng at the trailing edge is zero,
we get the modified in.tegrslequation

*X2 f(~,u=) ~=1 a2f[a*(@)yU~l
wo=—~

f u-al
f

&l-& ~ (55)o U-ul

where the variables u, al now replace F, T*, respectively.
The function

J-u-a2(x)f(x,u) = 2W0 —
m2x%

(56)

satisfies equation (55) and it remains now to determine a(x) so
that pressure is zero at the trailLng edge. But from equation (53)

llp(x,y) 2W0LE
and thus

where k? = ~ and E(k,~),F(k,~) are incomplete elli tic inte als

with modulus k =
‘x

~~ smd srgwnent V=zum sti ~

At the trailing edge y=a(x) and

.

_ -. ..— — -. —.. ., —— —-— -——- -...---.. ——_—
; .,
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.

where the elliptic integrals are now complete. If load coefficient
is set equal to zero, the differential equation

da m2x E—= —.
ax

(58)“a K

‘herek ‘F25J ‘“’-l--o
The titegration of equation (58) leads to the shape of the

trailing edge for which the Kutta condition is satisfied. Figure 9(b)
shows the plan form of the wing. It can be shown that the slope of
the extended trailing edge approaches the slope of the leading edge.

Figure 10.– Load distribution over swept-back plan form at ~=1.

In figure 10 the load distribution is shown at three spanwise
stations for the case when the wing is cut off along a line normal

.,



.

NAC?A~~0. 1767 35

to the fre~tream direction. Over the center section of the wing
the Ackeret type of Ustribtiion exists. The remaining sections have
discontinuities in slope of the loading at the point where the chord
line is cut by the Mach cone srising at the trailing edge of the root
chord. This behavior of the loading has been noted elsewhere for
swept-back wings at higher Mach nunibers. (See, e.g., reference 23.)

Lift coefficient ~ of the wing is given by the expression

where S and b are, respectimly, area &d semispa of the wing ad
the first tite@al extends from the leading edge to the trailing edge.
This equation maybe rewritten as

.

where A!p(T.E.,y) is the jump in potential at the
thus equal to the circulation function I’(y). The
are obtained:

(59)

trailing edge and
following results

r(y) = 2v@b

[ 1E(k,w)–(l&)F(k,V) , ASySb (6o) .

where k
‘m

snd A is &e lateral distance to the tiboard

.-.. - .——...- .. .- — , —-—- . . . .. .. -—-— _.—.—.. — ——.- ..— —— --------- -—-— -—— —-- -
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tiyof the wing. (See fig. 9(b).)

y@QTBNEn

Figure ll.– Spamwise distribution
of circulation for sweptAack
wing at &=l, b=l.325 co tan 80
and. AR~.~ tan 8..

A17/TAN ~

Figure 12.- Lift-curve slope as
function of aspect ratio for
Swep=ack ~ at %=1.

Ames AeronauticalLaboratory,
National Advisory Committee

Moffett Field, Calif.

a

for

D fi~e 11 the value of
1 is ~lotted as

Vocoa tan 50 --
a function of Y

cotan50
for a wing with s~span
b=l.32j co tan 60 and aspect
ratio AR=4.57 tan 5.. Results
of the integration of equation
(59) ae shown in figure 12

%where — is plotted as a
tan 50

fuction of
AR

tan 5.”

1767

The methods 2resented here
can be applied to the case of
the swep~ack w5ng with tips
cut off parallel to the free
stream. In this case a Mach
cone orig3.natesnot only at the
trailing edge of the root chord
but also at the intersection of
the leading and the lateral
edges. On the portion of the
~ d.ownstresmof this Mach
cone, the load distribution is
modified so that an abrupt Us-
continuity exists at the Mach
cone and negative loa~ is
effective over this psrt of
the wing. A similar effect on
this type of swepfibackwing has
also been noted at higher Mach
numbers in reference 23.

AeronatiicS,

/

———. .— —.,
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%

A

AR

b

co

c, c(e)

m

CLa

ma(t’ )

%

E

E~, Eto

El, E2

E(k,~)

I?(k,*)

G’”

k=

k2

,

AI?YM!WIX

List of Important

speed-of sound in free stream

Syuibols

later~ distance to inboard tip of swept wtng (See fig. 9)

aspect ratio

Semispan

chord length (two
root chord (three

load distribution

lift coefficient

lift-curve slope

d&lsions )
dhensions )

factor introduced in equation (16)

inaicial

pressure

complete

lift fmction

()Ho
coefficient

T

elliptic integral of the second ldnd with modulus k

complete elliptic integrals of the second kind with moduli

~, ~, respectively

complete elliptic integrais of the second ldnd with moduli
kl, k2, respectimly

‘%

J’
If dq

o J1–k%n%

parameter defined in equation (29)

Coeo
x-co

. —. . ——- ._- ._ _ ... . ______ ___ _ ______ ._r_____ ._ _ _
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K complete elM@ic integra3 of the first kind with modulus k

Kl, K2 complete elliptic integrals of the first kind with modul.i
kl, k2, respectively

Jfo freestreamMach nuder

P local.static pressure

Po fre-stream static pressure

~ freestream dynamic pressure
()
$OV02

‘A J(X–E)2+B2(H)2

rc J(X% )Z+pp[(y=q)a(%c)p]

‘D
J(X-E)=+32[ (yq)p+(%g)’]

s distance traveled ti half-chords

s area of wing

t time

u,v,w ~erturbation velocity components par-cl to x,y,z axes,
respectively

A%, Awo jump h value of u, w at the z=O plane

V. velocity of free stream

x,y,z Cartesian coordinates

x?,z?,t~ coorctin.atesintroduced in equation (2)

a angle of attack in radians

P m
Ap
T load coefficient

(~,<pu) -

.—. ,,— — --–- .—— —
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semimrtex angle of yawed triangular wing

angle between lifting element and x axis

angles between lex edges of yawed triaagle and x axis

ptana,ptanbo,ptab~

sideslip angle of yawed triangle

Mach sagle
(=C ‘b&) ~ ‘

Cartesian coordinates

fre~tream density

region of integration

perturbation velocity

Eg

sign denoting White

in equation (10)

potential

part” of integral

f3tiscripts

subscript denoting value of variable on upper surface
of wing

subscript denoting value of variable on lower surface
of wing
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